7 research outputs found

    Universal semantic communication

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 325-334).Is meaningful communication possible between two intelligent parties who share no common language or background? We propose that this problem can be rigorously addressed by explicitly focusing on the goals of the communication. We propose a theoretical framework in which we can address when and to what extent such semantic communication is possible. Our starting point is a mathematical definition of a generic goal for communication, that is pursued by agents of bounded computational complexity. We then model a "lack of common language or background" by considering a class of potential partners for communication; in general, this formalism is rich enough to handle varying degrees of common language and backgrounds, but the complete lack of knowledge is modeled by simply considering the class of all partners with which some agent of similar power could achieve our goal. In this formalism, we will find that for many goals (but not all), communication without any common language or background is possible. We call the strategies for achieving goals without relying on such background universal protocols. The main intermediate notions introduced by our theory are formal notions of feedback that we call sensing. We show that sensing captures the essence of whether or not reliable universal protocols can be constructed in many natural settings of interest: we find that across settings, sensing is almost always sufficient, usually necessary, and generally a useful design principle for the construction of universal protocols. We support this last point by developing a number of examples of protocols for specific goals. Notably, we show that universal delegation of computation from a space-efficient client to a general-purpose server is possible, and we show how a variant of TCP can allow end-users on a packet network to automatically adapt to small changes in the packet format (e.g., changes in IP). The latter example above alludes to our main motivation for considering such problems, which is to develop techniques for modeling and constructing computer systems that do not require that their components strictly adhere to protocols: said differently, we hope to be able to design components that function properly with a sufficiently wide range of other components to permit a rich space of "backwards-compatible" designs for those components. We expect that in the long run, this paradigm will lead to simpler systems because "backwards compatibility" is no longer such a severe constraint, and we expect it to lead to more robust systems, partially because the components should be simpler, and partially because such components are inherently robust to deviations from any fixed protocol. Unfortunately, we find that the techniques for communication under the complete absence of any common background suffer from overhead that is too severe for such practical purposes, so we consider two natural approaches for introducing some assumed common background between components while retaining some nontrivial amount of flexibility. The first approach supposes that the designer of a component has some "belief" about what protocols would be "natural" to use to interact with other components; we show that, given sensing and some sufficient "agreement" between the beliefs of the designers of two components, the components can be made universal with some relatively modest overhead. The second approach supposes that the protocols are taken from some restricted class of functions, and we will see that for certain classes of functions and simple goals, efficient universal protocols can again be constructed from sensing. Actually, we show more: the special case of our model described in the second approach above corresponds precisely to the well-known model of mistake-bounded on-line learning first studied by Barzdirs and Frievalds, and later considered in more depth by Littlestone. This connection provides a reasonably complete picture of the conditions under which we can apply the second approach. Furthermore, it also seems that the first approach is closely related to the problem of designing good user interfaces in Human-Computer Interaction. We conclude by briefly sketching the connection, and suggest that further development of this connection may be a potentially fruitful direction for future work.by Brendan Juba.Ph.D

    Efficient Semantic Communication via Compatible Beliefs

    Get PDF
    In previous works, Juba and Sudan [1] and Goldreich, Juba and Sudan [2] considered the idea of “semantic communication”, wherein two players, a user and a server, attempt to communicate with each other without any prior common language (or communication protocol). They showed that if communication was goal-oriented and the user could sense progress towards the goal (or verify when it has been achieved), then meaningful communication is possible, in that the user's goal can be achieved whenever the server is helpful. A principal criticism of their result has been that it is inefficient: in order to determine the “right” protocol to communicate with the server, the user enumerates protocols and tries them out with the server until it finds one that allows it to achieve its goal. They also show settings in which such enumeration is essentially the best possible solution. In this work we introduce definitions which allow for efficient behavior in practice. Roughly, we measure the performance of users and servers against their own “beliefs” about natural protocols. We show that if user and server are efficient with respect to their own beliefs and their beliefs are (even just slightly) compatible with each other, then they can achieve their goals very efficiently. We show that this model allows sufficiently “broad-minded” servers to talk with “exponentially” many different users in polynomial time, while dismissing the “counterexamples” in the previous work as being “narrow-minded,” or based on “incompatible beliefs.”National Science Foundation (U.S.) (NSF Award CCF-0915155)National Science Foundation (U.S.) (CCF-0939370

    A theory of goal-oriented communication

    Get PDF
    We put forward a general theory of goal-oriented communication, where communication is not an end in itself, but rather a means to achieving some goals of the communicating parties. Focusing on goals provides a framework for addressing the problem of potential "misunderstanding" during communication, where the misunderstanding arises from lack of initial agreement on what protocol and/or language is being used in communication. Despite the enormous diversity among the goals of communication, we propose a simple model that captures all goals.National Science Foundation (U.S.) (NSF Award CCF-0939370

    Compression without a common prior: An information-theoretic justification for ambiguity in language

    Get PDF
    Compression is a fundamental goal of both human language and digital communication, yet natural language is very different from compression schemes employed by modern computers. We partly explain this difference using the fact that information theory generally assumes a common prior probability distribution shared by the encoder and decoder, whereas human communication has to be robust to the fact that a speaker and listener may have different prior beliefs about what a speaker may say. We model this information-theoretically using the following question: what type of compression scheme would be effective when the encoder and decoder have (boundedly) different prior probability distributions. The resulting compression scheme resembles natural language to a far greater extent than existing digital communication protocols. We also use information theory to justify why ambiguity is necessary for the purpose of compression.National Science Foundation (U.S.) (Award CCF-0939370)National Science Foundation (U.S.) (Award CCF-0635084)National Science Foundation (U.S.) (Award IIS- 0904314.

    Popularizing Fairness: Group Fairness and Individual Welfare

    No full text
    Group-fair learning methods typically seek to ensure that some measure of prediction efficacy for (often historically) disadvantaged minority groups is comparable to that for the majority of the population. When a principal seeks to adopt a group-fair approach to replace another, the principal may face opposition from those who feel they may be harmed by the switch, and this, in turn, may deter adoption. We propose that a potential mitigation to this concern is to ensure that a group-fair model is also popular, in the sense that, for a majority of the target population, it yields a preferred distribution over outcomes compared with the conventional model. In this paper, we show that state of the art fair learning approaches are often unpopular in this sense. We propose several efficient algorithms for postprocessing an existing group-fair learning scheme to improve its popularity while retaining fairness. Through extensive experiments, we demonstrate that the proposed postprocessing approaches are highly effective in practice

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore